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Abstract. We use a microscopic model of population dynamics, a modified version of the well known Penna
model, to study some aspects of microevolution. This research is motivated by recent reports on the effect
of selective hunting on the gene pool of bighorn sheep living in the Ram Mountain region, in Canada.
Our model finds a sharp transition in the structure of the gene pool as some threshold for the number of
animals hunted is reached.

PACS. 87.23.-n Ecology and evolution – 05.10.Ln Monte Carlo methods

1 Introduction

The impact of anthropic activities on ecologic equilib-
ria is a common and urgent problem that challenges the
scientific community to find new and sharper solutions
for sustainable resource management. In particular, new
data and studies have pointed out how the traditional ap-
proaches, focused only on demographic and ecological fac-
tors, ignoring the possibility of evolutionary changes, are
hiding part of the problem [1]. A clear evidence for such
phenomena is particularly well demonstrated by the ef-
fects of overfishing [3]. Actually, we can look at this activ-
ity as a good paradigm, as some sort of large scale experi-
ment on life history evolution, that gives a strong support
to the thesis of the speeding up of evolutionary processes
as a result of human activities. In fact, fishing causes a
highly selective mortality depending on a particular trait
(size). The variability of a trait that confers a difference
in survival and, as a consequence, in reproductive success,
added to the fact that this trait variation is inherited,
causes the population to evolve in a direction that op-
poses the trait bias of harvesting [4]. We can easily find
other examples in many different areas of biology. It is
well known, for instance, that bacteria are able to rapidly
develop resistance to many antibiotics. Evolution of immu-
nity to such a drug, that could occur, albeit with a very
low probability, even without human intervention, can be
reached within a few years of the commercial usage of a
new antibiotic [2]. By the same token, the attempt to con-
trol the overpopulation of European domestic rabbits in
Australia, that grew up to a plague, through the introduc-
tion of myxomatosis was frustrated by the effect of a fast
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evolutionary response to the disease. Even if there is no
clear quantitative measure of the speed with which evolu-
tion responds, it is possible to find growing evidence that
evolutionary shifts are sometimes very fast, comparable to
the lifespan of a human being (microevolution). Support
to this consideration is given by recently published data re-
lated to a long term study of the effects of trophy hunting
on a population of bighorn sheep on the Ram Mountain,
Canada [5]. From this study it emerges that, in a timespan
of just 30 years, selective hunting based on some pheno-
type character – horn size in this particular case – can
have caused the depletion of the genes that confer rapid
body and horn growth. In fact, an observed decline in
mean breeding values for weight and horn size indicates a
microevolutionary response to hunting selection.

The main aim of this work is to show that a simple
computational model of population dynamics, the Penna
Model [6], is capable of reproducing such process. To be
specific, our interest is to show how can we obtain a sta-
ble solution for a population subjected to microevolution
and to give a full description of its dynamics. For this
purpose, we will describe the dynamics of a diploid sex-
ual population, representing each individual by its diploid
genome, simulated by two sets of coupled bit-strings. An
allele is encoded by two homologous bits in each of these
bit-strings. The collective behaviour of these agents is dic-
tated by a set of simple rules that we sum up in what
follows. Introduction of new individuals in the population
is obtained through a reproductive cycle that simulates
birth. Each individual of a reproductively active couple
generates, through a meiotic cycle with crossing-over two
haploid gametes that, after the introduction of some mu-
tations, combine to form a new genetic strand. Crossing is
obtained cutting at a random position each string of the
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Fig. 1. Representation of the reproductive cycle. The diploid
genome is represented with its age-structured part (light-
shaded background) and the bit-strings that encode for pheno-
type (diagonal stripes in the background). As a first step, the
genetic strands are crossed and recombined. A random choice
determines the haploid gamete, as shown in the second step.
Finally, some new mutation are added (dark-shaded squares)
and the gametes combine to form a new genetic strand.

parent’s genome and combining the left part of one with
the right part of the other. In so doing, two new combina-
tion of the original genes are generated, and the haploid
gamete is chosen randomly to be one of these (see Fig. 1).

The passage of time and the death of agents fol-
low rules inspired by biological ageing as described by
Medawar’s hypothesis of accumulation of bad mutations.
A position (locus) of the chronological (age-structured)
piece of the genome is read at each time step. If an ac-
tive mutation is found at this locus, it is added to the
current number of harmful mutations; the individual dies
when this amount reaches some pre-determined threshold
value. In order to be active, a harmful mutation must oc-
cur at a homozygote locus, or at a heterozygote one for
which the harmful allele is dominant. The number of loci
where the allele represented by a bit set to 1 is dominant
is fixed, and their position in the genome string is chosen
randomly at the beginning of the simulation.

The biological and computational necessity of study-
ing finite populations imposes the introduction of an-
other death factor. It is usually represented by a density-
dependent mean-field death probability, called Verhulst
factor, proportional to the current size of the population.

The full simulated genome can include, other than the
age-structured bit-strings used to introduce the biologi-
cal clock of the individuals, other pairs of bit-strings that
encode for phenotype traits that are responsible for in-
traspecific and/or environmental interactions. With this
technique it is possible to establish a computational rep-
resentation of competition and/or sexual selection [8–10].
In our present study, we will use just one extra bit-string
to represent a single biological trait. A phenotype value is
attributed to it by summing over all the active mutations
present in the bit-string that encodes this trait – again, we

consider as active a mutation at a homozygous locus, or at
a heterozygous one where the mutated allele is dominant.

According to this procedure, the phenotype value is an
integer between 0 and 32, and is different from the simple
sum of all the ones present in the bit-string that deter-
mines the genetic distribution. We will refer to this latter
number as the trait bit-string value. The essential differ-
ence lies in that the phenotype value takes into account
the dyploid nature of the genome, through the effects of
dominance and homozygose. On the opposite, the trait
bit-string value is simply related to the frequency of the
1 allele in the genome.

Bits of the trait bit-strings can mutate from 0 to 1 or
from 1 to 0, as opposed to ageing bit-string, that can un-
dergo only bad mutations.

2 Model and methods

In a previous publication [7], the simplest implementation
of the Penna model was able to make predictions relative
to changes caused by overfishing on a population with a
strong relation between age and size. This fact allowed
the usage of the age-structured bit-strings of the genome
alone for a full description of the relevant interactions.

The idea of the present work is to build up a sim-
ple toy model, inspired by the gene pool dynamics of the
Ram Mountain population, capable of representing just
the fundamental features of a real population.

For this reason, we have chosen to represent each in-
dividual by a genome with just two pieces: the first is the
age-structured bit-string, while the second bit-string de-
termines the individual phenotype. The classical rules of
the Penna model, with a standard logistic Verhulst fac-
tor [8], are applied to this population. Under these con-
ditions, the population dynamics obtained is simple and
well known: the age-structured part of the genome causes
the population to age in accordance with Gompertz law.
On the other hand, the trait bit-string value, that does
not feel the effect of any interaction, reaches a Gaussian
shaped distribution with 16 as the mean value.

We now add to this simple basic model the two main
forces that drive the dynamics of the phenotype distribu-
tion: sexual selection correlated with the phenotypic as-
pect and a phenotype-based selective hunting.

Our simulations are inspired by the observational data
related to the population of the Ram Mountain [11], where
sexual selection in bighorn rams operates in such a way
that mating success increases with age, horn length and
body size, tending to concentrate the paternities in those
more favored rams. In our simulations we represent all the
phenotypical dependence of mating success by one single
trait. For simplicity, mating success has no age dependence
in our implementation.

The first ingredient that is essential to affect the gen-
eral distribution of the phenotype is to allow for paternity
concentration. For this reason it is important to allow a
male to mate more than once in each reproductive cy-
cle. At each time step, each female that is reproductively
active makes a non-random choice of her mating partner.
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The selection is made by choosing among 20 males the one
that has the highest phenotype value (extreme dynamics).
This sexual selection causes a drift of the trait bit-string
distribution towards higher values. In Figure 2 we can see
that the distribution, after 100000 time steps, is centered
around 26.

The hunting pressure we simulate was inspired by the
conditions and laws prescribed in the Ram mountain re-
gion [5]. These state that it is allowed to hunt only rams
older than four years and “full-curl” trophy rams, up to
a maximum number of animals. In our simulations, we
hunt male individuals older than 4 and with a phenotype
value bigger than 16. The harvesting is implemented in the
following way: we do a number of random attempts (ap-
proximately equal to the population dimension) of finding
individuals that satisfy such characteristics and we stop
the hunting when the established threshold number of an-
imals killed is reached.

With this simulation setting, we leave the popula-
tion evolving, with no harvesting selection, for 50000 time
steps. After this first equilibrium is reached, we switch on
the hunting selection. We estimate that after 50000 time
steps further a final equilibrium is obtained.

In the simulations, particular attention must be payed
to the population size. The real biological population of
the Ram Mountain, during the years of observation, was
approximately 140 animals, with rather large fluctuations
over the years. The simulation of such a small population
is really problematic. Not only is it difficult to do a confi-
dent statistical analysis of the results, but also the size of
the fluctuations destroys the key elements of the model.
The general dynamic, in fact, is no longer driven by the
bit-string dynamics, but by the Verhulst factor instead,
and it is also difficult to find a phenotype equilibrium dis-
tribution. For all these reasons we decided to describe the
behaviour of a population of about 10000 individuals, con-
sidering this the smallest population that it is still suitable
for a study with this model and that can allow for a consis-
tent statistical approach. We have performed simulations
with about 250000 individuals but it was not possible to
point out differences or possibles finite scale effects.

3 Results

We say that the population has undergone a significant
variation in its gene pool when the corresponding mean
value of the trait bit-string distribution has changed by
more than the value of its standard deviation. By this
token, the mean value of the trait bit-string distribution
is used to define the state of the system.

We have decided to use this parameter instead of the
phenotype value to keep our focus on evolutionary changes
and variation at the genome level. The choice is, as a mat-
ter of fact, immaterial, and the results are qualitatively
identical because, in our model, the relation between phe-
notype and genome is over-simplified and direct, and does
not take into account environmental factors.

As we can see in Figure 2 the fundamental state of
the system is a distribution centered in 26 with standard
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Fig. 2. Trait bit-string distribution for the two equilibrium
states (no hunting and hunting pressure equal to 500). The
data are well fitted by Gaussians with mean values 25.9 and
19.3, and standard deviations 2 and 2.4 respectively. The pa-
rameters used in the simulation are: the Verhulst parameter
(130000), the initial population (2000), the minimum reproduc-
tion age (8), the maximum reproduction age (32), the number
of offsprings (1), the threshold value (3), the same number of
mutations (1) and dominant loci (6) for the two bit-strings.
We have averaged over 10 different realizations in each case.

0 100 200 300 400 500
animals hunted

0

0,2

0,4

0,6

0,8

1

si
m

ul
at

io
ns

 w
ith

 g
en

e 
po

ol
 tr

an
si

tio
n

Fig. 3. Fraction of simulations that undergo a transition as a
function of the number of animals hunted.

deviation of 2. If the hunting selection is switched on, a
drift towards lower values is caused. In particular, if we se-
lect a hunting threshold of 230 animals for each time step,
the distribution has its lowest mean value (19). From this
point on, increasing the number of animals hunted will
not cause any changes in the distribution. The distribu-
tion with mean 19 is thus some sort of equilibrium, or
statistically stationary state, and limitations imposed on
the hunting process will not affect any further the gene
pool of the population.

We performed a hundred different simulations, for each
set of parameters, to investigate the behaviour of the gene
pool as a function of the number of animals hunted. The
results are shown in Figure 3. It emerges that, for values
smaller than 200, the fraction of simulations with a mean
value of the trait bit-string distribution smaller than 23 is
negligible. For 200 kills, in 20% of the simulations the
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Fig. 4. The most probable value (mode) assumed by the trait
bit-string distribution as a function of time. When there is
no hunting it reaches the value 26 and does not change any
more. For 150 animals hunted, from time step 50.000 on, this
value moves to 25. For 230, it changes to 24 before stabilizing
at the state of equilibrium at 19. In the last simulation, for
500 animals hunted, the mode undergoes a sharp transition
towards 19. The time coordinate is shifted to a different origin
for each simulation for clarity.

model suffers a transition of the trait bit-string distribu-
tion to reach a mean value close to 19. By increasing the
number of animals killed, the number of simulations that
undergo the transition also increases, and, for values larger
than 230, all the simulations end up with a distribution
with a mean value close to 19. An interesting and not so
intuitive result is that not all the possible states are visited
by the phenotype distribution as the number of animals
hunted is varied. There is a forbidden region between 21
and 23, never visited by the mean value of the trait bit-
string distribution. As a result, the model has only two
different stationary states.

If we look at the dynamical behaviour of the model
(see Fig. 4), it is possible to notice that the evolution of
the system is really abrupt, and only 100 time steps are
sufficient to drive the trait bit-string values from one state
to the other (for 500 animals hunted, all the simulations
reached the transition in less than 100 time steps). This
fact is particularly interesting because it shows how fast
the sharp transition that we are describing occurs. For
this reason, we claim that our model can well represent
the phenomenon of microevolution that has motivated our
work. A fast transition is not the only possible outcome

though, in fact, in some simulations where the number of
animals hunted is between 210 and 230, the trait bit-string
value becomes metastable before reaching the stationary
state, and the time-scale of the transition becomes large.

4 Conclusion

In this paper, we provide an example of how studies of
microevolutionary processes may be undertaken with the
usage of microscopic models of population dynamics. By a
careful selection of the key ingredients, we show that a toy
model that mimics the main features of some particular
gene pool dynamical behaviour can single out the domi-
nant structures of its trajectories in phase space. In our
particular case, these features relate to a biological trait
that identifies preferred mating partners and also hunt-
ing trophies. The competition that results from this situ-
ation generates a transition in the gene pool repertoire of
the population as some threshold number of animals are
killed, both in the results of our simulations and in the
observational data.
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